skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ling, Chun Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coalitions naturally exist in many real-world systems involving multiple decision makers such as ridesharing, security, and online ad auctions, but the coalition structure among the agents is often unknown. We propose and study an important yet previously overseen problem -- Coalition Structure Learning (CSL), where we aim to carefully design a series of games for the agents and infer the underlying coalition structure by observing their interactions in those games. We establish a lower bound on the sample complexity -- defined as the number of games needed to learn the structure -- of any algorithms for CSL and propose the Iterative Grouping (IG) algorithm for designing normal-form games to achieve the lower bound. We show that IG can be extended to other succinct games such as congestion games and graphical games. Moreover, we solve CSL in a more restrictive and practical setting: auctions. We show a variant of IG to solve CSL in the auction setting even if we cannot design the bidder valuations. Finally, we conduct experiments to evaluate IG in the auction setting and the results align with our theoretical analysis. 
    more » « less
  2. Function approximation (FA) has been a critical component in solving large zero-sum games. Yet, little attention has been given towards FA in solving general-sum extensive-form games, despite them being widely regarded as being computationally more challenging than their fully competitive or cooperative counterparts. A key challenge is that for many equilibria in general-sum games, no simple analogue to the state value function used in Markov Decision Processes and zero-sum games exists. In this paper, we propose learning the Enforceable Payoff Frontier (EPF)---a generalization of the state value function for general-sum games. We approximate the optimal Stackelberg extensive-form correlated equilibrium by representing EPFs with neural networks and training them by using appropriate backup operations and loss functions. This is the first method that applies FA to the Stackelberg setting, allowing us to scale to much larger games while still enjoying performance guarantees based on FA error. Additionally, our proposed method guarantees incentive compatibility and is easy to evaluate without having to depend on self-play or approximate best-response oracles. 
    more » « less
  3. Correlated Equilibrium is a solution concept that is more general than Nash Equilibrium (NE) and can lead to outcomes with better social welfare. However, its natural extension to the sequential setting, the Extensive Form Correlated Equilibrium (EFCE), requires a quadratic amount of space to solve, even in restricted settings without randomness in nature. To alleviate these concerns, we apply subgame resolving, a technique extremely successful in finding NE in zero-sum games to solving general-sum EFCEs. Subgame resolving refines a correlation plan in an online manner: instead of solving for the full game upfront, it only solves for strategies in subgames that are reached in actual play, resulting in significant computational gains. In this paper, we (i) lay out the foundations to quantify the quality of a refined strategy, in terms of the social welfare and exploitability of correlation plans, (ii) show that EFCEs possess a sufficient amount of independence between subgames to perform resolving efficiently, and (iii) provide two algorithms for resolving, one using linear programming and the other based on regret minimization. Both methods guarantee safety, i.e., they will never be counterproductive. Our methods are the first time an online method has been applied to the correlated, general-sum setting. 
    more » « less